

Sport, stress et performance Le psychique

est le plus grand obstacle à la bonne exécution de toute action physique Bruce Lee (1975)

Principales manifestations du stress

Appareil neuro psychique	Anxiété Défaut d'attention, Sentiment de mal être		
Appareil locomoteur	« Jambes en coton » ou Contracture, Douleur articulaire et musculaire		
Appareil respiratoire	Oppression, Tachypnée		
Appareil digestif	Maux de ventre, troubles du transit		
Appareil cardio- vasculaire	Palpitations, Tachycardie, Hypertension artérielle		
Appareil urinaire	Troubles mictionnels		

Préfrontal

ALERT, SAFE, INTERESTED

Moderate levels of catecholamine release strengthen dIPFC, weaken amygdala, and reduce tonic LC firing (NE: α2A)

Limbique

Le Flow

- MIHALY CSIKSZENTMIHALYI -

Le flow est une *sorte d'anomalie* de *l'attention* (Bruya, 2010) : les demandes accrues sont paradoxalement satisfaites **Sans effort** apparent (Csikszentmihalyi, 1975), et les athlètes signalent une **concentration-laser** face aux distractions (Jackson et Csikszentmihalyi, 1999).

Le flow est souvent lié aux **performances** maximales (Jackson et al., 2001; Koehn et Morris, 2012) ainsi qu'à un **plaisir** accru (Privette, 1983).

Le Flow

L'attention lors du flow est plus externe, moins consciente de soi, moins sujette aux distractions et davantage **Orientée vers les** tâches, ce qui entraîne une amélioration des performances.

Cerveau salient et exécutif

FIG. 2

The ventral network (*blue*), responsible for reorienting attention to salient stimuli, projects from the temporoparietal junction (TPJ) toward inferior frontal gyrus (IFG) and middle frontal gyrus (MFG). The dorsal network (*orange*), responsible for top-down voluntary allocation of attention, projects from the superior parietal lobe (SPL) toward the frontal eye fields (FEF). The MD system includes overlapping frontoparietal areas, from the SPL to the premotor cortex and inferior frontal sulcus (IFS).

Cerveau mode par défaut Ego, pensées disruptives

FIG. 4

Medial areas of the default mode network. Medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), and precuneus (PC) are active when the individual is engaged in mind wandering and thoughts about the self. The DMN also includes lateral parietal and medial temporal areas.

Cortex cingulaire antérieur

FIG. 3

Key prefrontal areas and some of their functions. The ACC may contribute to perceptions of effort during flow, while imaging has suggested reduced mPFC activity (Ulrich et al., 2016) but increased activity within IFG (Ulrich et al., 2014) and dIPFC (Yoshida et al., 2014).

Le Flow: comment y arriver?

- Relâchement corporel
- Les Ressources et les Automatismes au niveau maximal et en phase avec les demandes, permettant d'être dans l'Eustress
- Respiration = Présent automatisé
- Lâcher prise
 - Pas de jugement = pas de passé
 - Pas d'attente = pas d'envie = pas de futur
- Concentration vers l'Extérieur
 - Développement de la Concentration = méditation

Le Flow: comment sait-on si on est dans la zone?

- Sensation de contrôle
- Disparition de l'égo
- Fusion avec « l'objet » = distance entre le joueur et la balle s'abolit
- Distorsion temporelle = présent élargi
- Autotélisme : circuit dopaminergique

Sport, stress et performance La nutrition

Les balances nutritionnelles

Balance Dopamine Tryptophane

Balance Dopamine Tryptophane

Une alimentation bien équilibrée est indispensable pour notre rythme éveil-sommeil. Certains aliments sont à privilégier afin de stimuler l'éveil le matin (dopamine) et favoriser la détente et le sommeil le soir (sérotonine).

LE MATIN : idéalement le petit déjeuner contiendra une source de protéine (fromage, fromage blanc, jambon, œuf, viande des grisons, saumon...). Ces aliments riches en tyrosine (précurseur de la dopamine, hormone du réveil) facilitent l'éveil, le démarrage matinal et permettent de prévenir les « coups de barre » de la fin de matinée.

LA COLLATION : privilégier des fruits secs (figues séchées, abricots secs, raisins secs...), des fruits oléagineux (amandes, noix, noix du brésil...), du chocolat noir. Richele la character, ces aliments contribuent à améliorer l'assimilation du tryptophane (précurseur de la sérotonine) et permettent ainsi un meilleur sommeil et repos.

LE SOIR : privilégier les poissons riches en tryptophane, un acide aminé précurseur de la sérotonine avec des féculents de préférence complet ou semi-complet (riz, lentilles, pâtes complètes...). N'oubliez pas de consommer des huiles riches en oméga 3 comme l'huile de colza, l'huile de noix ou l'huile de cameline. Eviter les viandes rouges, riches en dopamine, les plats en sauce et des boissons stimulantes comme le café qui retardent l'endormissement.

Balance Dopamine Tryptophane

Balance énergétique

Balance vitaminiques

Balance éléments traces

Nutrients	Nutrient Functions Related to Performance	Impact Related to Performance when Inadequate	Primary Food Sources
Proteins and essential amino acids	Maintenance; repair; and synthesis of skeletal muscle	Reduced muscle mass	Soy products, beans and legumes, eggs, and tofu
Essential fatty acids (n-3 fatty acids)	Attenuate tissue inflammatory process and oxidative stress	Muscle fatigue; pain; and swelling as a result of inflammation	Fish, eggs, canola oil, flaxseed, nuts, and soybeans
Iron	Oxygen carrying capacity; energy production; and synthesis of hemoglobin and myoglobin	Impaired muscle function and limited work capacity; lowered oxygen uptake; lactate buildup; and muscle fatigue	Fortified foods, legumes, dried beans, soy foods, nuts, dried fruits and green leafy vegetables
Zinc	Growth, building, and repair of muscle tissue; energy production; and immune status	Decreases in cardiorespiratory function; muscle strength; and endurance	Legumes, whole grains, cereals, nuts and seeds, soy and dairy products
Vitamin B ₁₂	Proper nervous system function; homocysteine metabolism; production of red blood cells; protein synthesis; tissue repair; and maintenance	Anemia; reduced endurance and aerobic performance; and neurological symptoms	Dairy products, eggs, fortified foods and beverages
Vitamin D	Calcium metabolism; bone health; development and homeostasis of the nervous system; and skeletal muscle and cardiovascular fitness	Lower muscle strength, muscle mass; inflammatory disease; and increased incidence of bone fracture	Dairy products, eggs, fortified foods and beverages
Calcium	Growth, maintenance, and repair of bone tissue; maintenance of blood calcium concentration; regulation of muscle contraction; normal blood clotting; and nerve transmission	Increased risk of low bone mineral density and stress fractures and menstrual dysfunction among female athletes	Dairy products, calcium- fortified tofu, calcium-fortified foods and beverages

TABLE 8.1Potential Risk of Nutrient Inadequacies and Impact Related to Performances for Vegetarian Athletes

Balance acido-basique

L'équilibre acido-basique

Equilibre acide-base : qu'est-ce que l'indice PRAL?

Balance Oméga 6 Oméga 3

© 2002. Michel Lucas & Richard DesRochers

BIOLOGIE Nutritionnelle

Balance oxydo-réduction

Balance oxydo-réduction

L'ORAC (acronyme pour "Oxygen Radical Absorbance Capacity" signifiant capacité d'absorption des radicaux oxygénés)

Niveau d'antioxydants

Balance perméabilité hyperperméabilité

- Glutamine
- Probiotiques
- Colostrum bovin

Sport, stress et performance L'hydratation

Merci

